\qquad

1) A pole vaulter at the Relativistic Olympics sprints past you with a speed of 0.65 c . When he is at rest, his pole is 7.0 m long.

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}, \Delta t=\gamma \Delta t_{0}, L=\frac{L_{0}}{\gamma}
$$

a) ${ }^{2}$ What is gamma?
b) ${ }^{2}$ What length do you perceive the pole to be as he passes you, assuming his pole is parallel to his motion? (Draw the poles for him at rest and running \& label $L_{0} \& L$)

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\frac{0.65^{2} c^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-0.4225}}=1.32 \\
& L=\frac{L_{0}}{\gamma}=\frac{7 \mathrm{~m}}{1.32}=5.32 \mathrm{~m} \quad \begin{array}{l}
\text { The proper length occurs in the } \\
\text { reference frame where the } \\
\text { object (or distance) is at rest. } \\
\text { The pole is at rest in the } \\
\text { runner's reference frame. }
\end{array}
\end{aligned}
$$

2) A spacecraft moves past a student with a relative velocity of 0.90 c . The pilot of the spacecraft works out for 30 minutes on her watch.
a) ${ }^{2}$ What is gamma?
b) ${ }^{2}$ How long does the pilot exercise according to the student? (Draw hands on Earth's clock and label $\Delta t_{0} \& \Delta t$)

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\frac{0.90^{2} c^{2}}{c^{2}}}}=\frac{1}{\sqrt{0.19}}=2.29
$$

$\Delta t=\gamma \Delta t_{0}=2.29(30 \mathrm{~min})=68.8 \mathrm{~min}=1 \mathrm{hr} 8.8 \mathrm{~min}$
The proper time is in the reference frame where the clock stays in the same place - the pilot's clock is in the same place for her at the beginning and end of her exercises.

3) ${ }^{2}$ Solve the Lorentz factor for $v: \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
Square both sides: $\quad \gamma^{2}=\frac{1}{v^{2}}$ Square both sides:

Multiply both sides by the denominator:

Divide by γ^{2} :

$$
\begin{aligned}
& \gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=1 \\
& 1-\frac{v^{2}}{c^{2}}=\frac{1}{\gamma^{2}}
\end{aligned}
$$

Move the 1: $\quad \frac{v^{2}}{c^{2}}=1-\frac{1}{\gamma^{2}}$
Multiply by $c^{2}: \quad v^{2}=\left(1-\frac{1}{\gamma^{2}}\right) c^{2}$
$\begin{aligned} & \text { Take the square } \\ & \text { root of both sides: }\end{aligned} \quad \mathbf{v}=\sqrt{1-\frac{1}{\gamma^{2}}} \mathbf{c}$

